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I. Introduction

In filtering and smoothing, information carrying data are extracted from noisy

observations. The formalization and solution of the filtering and smoothing problems are

well established, when the joint process that characterizes the relationship between

information and noise data sequences is statistically well known (see Kalman (1960,

1963), Kolmogorov (1941), and Wiener (1949)), or parametrically known. Linear filtering

* and smoothing operations are then by far the most widely used, due to their simplicity in

implementation. In practice, however, the occurrence of occasional extremely erroneous

data values, called outliers, are frequently observed. Furthermore, linear data operations

are notoriously nonresistant to such outliers, inducing dramatic performance instabilities.

The purpose of this paper is to establish a theory for outlier resistant filtering and

smoothing procedures, and to provide specific such data operations for Gaussian

information processes, and additive, nominally Gaussian, noise processes. The initial

steps of our presentation are based on the theory of qualitative robustness (see Boente et

* al (1982), Cox (1978), Hampel (1971), Papantoni-Kazakos and Gray (1979), and

Papantoni-Kazakos (1981, 1987, 1984a, 1984b)). Our approaches on pertinent

performance criteria are as those in Hampel et al (1986).

Problems of nonlinear filtering are considered in the paper by Masreliez and Martin

(1977). In particular, the above authors present a robustification procedure for Kalman

filters operating on the outputs of linear dynamical systems. Discussion of their results

and comparisons with ours are given in Section 4 and 6 of this paper.

A general theory and methodology for nonlinear smoothers, acting on stationary

processes, is developed by Mallows (1980). The issue of primary concern there is the

I|
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decomposition of smoothers into linear and nonlinear parts and the study of their

properties. Furthermore, the problem of outlier resistance is examined, using as indicator

of resistance an extension of Hampel's concept of the breakdown point. However,

explicit design issues are not undertaken. Relevant results on the design and analysis of

specific outlier resistant filters and smoothers for stationary processes can be found in

Tsaknakis (1986).

* In section 2 of this paper, we first present a formalization of the filtering and

smoothing problem under consideration. Then, we define outher resistance for filtering

d" and smoothing operations and present certain sufficient conditions for resistance of such

operations. In section 3, a two person game formalization is adopted for fixed finite

length operations and the corresponding least favorable structure is derived. In Section

4, the above structure is used for the design of a causal recursive filtering operation when

the nominal information process is autoregressive and the nominal noise process is i.i.d.

Then the asymptotic properties of the resulting operation are studied on a stationary

*• environment, in terms of asymptotic outlier resistance, asymptotic stationarity and

asymptotic mean square error at the nominal model.

*In section 5, we define the breakdown point and the influence function of a filtering

or smoothing operation. Both these quantities are defined in such a way as to reflect

important sensitivity aspects of the mean square error, induced by the filtering or

smoothing operation, to the action of outliers. Then, we continue with the explicit

evaluation and study of the breakdown point and influence function of the filter presented

in section 4. Section 6 is devoted to the numerical evaluation and comparison of the

proposed filter in relationship to an existing one, for specific numerical examples.

2



Finally, in section 7, we briefly present some conclusions.

2. Preliminaries

We consider real-valued discrete-time information and noise stochastic processes,

denoted respectively by {X, nEZ), (W, ncZ}, where Z is the set of integers. The

observation process, {Yn' nEZ} is given by the equation.

Y =X± +W nEZ (1)

It will be assumed that the information and noise processes are independent. Then a

4 ~ comolete statistical description of the model (1) is provided by the probability measuresof

{Xn), {Wn), denoted by gs, Nt respectively. The probability measures of the

observation process IYn ), denoted by py, is expressed as the convolution L' = 4*4N

and the joint probability measure of {Y, X}, denoted by g, is expressed as the product

"G(Yn'Xnn)= Sn({XnL1),aN({Yn - Xn)). Assuming that (Xn} has finite second order

• moments, let us consider the minimum mean square estimation of the information
i1

process value X0 given a finite length I observation sequence (yi, yi+,_), denoted as y

for short. If i+/-<O, we refer to causal filtering or simply filtering. If i+l-l1>O we refer

to noncausal filtering or smoothing. Given the measure g, the minimum mean square

estimator, X 0' of X0 is the conditional expectation

XjOy) E{IX/y"pi (2)

which is a function of the sequence y whose specific form is determined by g.. If 4 is

. Gaussian, X0 (y ) is an affine transformation of y . The induced by X0 mean square error

is denoted by e(p.,X 0), and is a functional of 4 and X0 given by the expression

A ) 3
Ed,
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C

e( .,Xo) = E [Xo-Xo(Y')f't} (3)

The occurrence of occasional erroneous values in the noise process (Wn}, called
4n

- outliers, induces uncertainties in the description of the measure N That induces further

-*• uncertainties in the measures g and 4ay. The initial issue here is the qualitative

characterization of those uncertainties. A particularly useful tool for describing

uncertainties of probability measures is the Prohorov distance (see Hampel (1971), Boente

-. et al (1982), Papantoni-Kazakos (1987, 1984b)), whose definition is given below.

Let p(',') be a metric in R , and let vl,v2 be probability measures defined on the

Borel field of (R ,p). Let N be the class of all joint measures, v, whose marginals are v

and v The Prohorov distance [IP(v 1,v2 ) is defined as follows

H Ip(V IV 2) = inf inf{6>0 : v(ao, p(o,3)>6)<6} (4)
* wEN

pt nwhere x,p3 denote elements of R

The selection of the metric p(,') reflects the pattern according to which the outliers

corrupt the nominal process. For the purpose of this paper, we select a metric which

corresponds to outliers occurring in batches, or bursts of size m, m being a fixed design

parameter. Such a metric is defined as follows: (see Papantoni-Kazakos (1984a, 1984b)).

n kFor ot,3eR n, let ox, 3 be sequences generated by repetitions of oa and 3. Also, let a.
J

.! t.denote (a.-, c.k), j! k. Then, we define the metric pn (-,-) in Rn as

i+m-1 i+m-I
Pnm(a,3) = inf{I>0 : n 1 # i • 'm((li I3. )>61<8} (5)

• '* i=l,...n

where, the auxiliary metric ym(',') is defined as

4a,.
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Sm(aP') = m c 1, o',cR M  (6)
i=l

In the sequel, we use the Prohorov distance in (4) with the metric (5) to give a

, formal definition of outlier resistant estimators. Let oN W 4oY denote the nominal

measures of the noise and observation processes respectively, and p. denote the nominal

joint measure of the observation and information processes. Also, let p.os = pt. be the

fixed information process measure.

An estimator X0(Y ) of X0 from the observation sequence y is called outlier

resistant or qualitatively robust at .oN if

.'rl>O, there is an E>O such that

17• 1 (° N ) < e implies I e(p.o,Xo)---e(.,Xo) I <T1

for every n.

Notice that po and p. are fully determined from .to and -N"
0"o

Considering stationary and ergodic processes, the limit 1 im FI (. ) is equal
Pn= lom N

to the Prohorov distance Fl m(ioN). Since the Prohorov distance FHm (-,.) metrizes the

weak topology of the probability measure on (Rm, tm), an estimator X0(Yt ) of length 1<Im

is resistant, if it is pointwise continuous and bounded. Such estimators are constructed in

section 3. However, for l>m, these conditions are no longer sufficient; appropriate
It.

resistant estimators of asymptotically large length are constructed in section 4.

Consider now the m-dimensional restriction of the nominal measure and let it

,, €. be denoted by p.' Furthermore, assume that tm is absolutely continuous with density

% %ZAS4,) , •,"., , . , olr - ,2',..- ',,.. ".. ' O'..,'?', ..d, .2 " ...,_ ''. -' . , _ , ,".. ¢ "--,.2 * -, ,".



f " Then, the c-contaminated class of densities
t.

F m ( M + Eh , h arbitrary m-dimensional density) (7)
F(E) {fN =(1-E)fON (7)

i is contained in the class H 7. (itN4IN) -c of measures L N, for any E, O<E<1. The constant

.. E can be interpreted as frequency of outlier occurrence.

The class F N (E) of noise densities induces the following class of joint m-

dimensional densities of the observation and information processes.

So(E)= {fro. f m (yM xM) =(1-E)fs(X )fN(y -x + cfs(x )h (y -xm (8)

h m arbitrary}

Class Fm(E) contains all the necessary statistical information for constructing estimators

of length at most m and will be used in the forthcoming section as the model for

statistical contamination.

3. Construction of Filtering and Smoothing Operations - Step I

In this section we derive a finite length robust estimator of the information process

given observation sequence of length l_<m, where m corresponds to outlier patterns, as

4' discussed in the previous section. The derivation is based on a two-person game

formulation of the estimation problem, with payoff function the induced mean square

error. To fix ideas, suppose that X is to be estimated from a length 1 observationq i~-

sequence v. , denoted as y for short (assume i_<O<i+/-1). The joint density of x0 and

y , denoted by f(xo,y ), belongs to an e-contaminated class obtained from the appropriate

4% (,.restriction of the more general class Fm(E), as defined in (8). We assume that the

information process is a fixed zero mean Gaussian process and that the nominal noise

6
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process is also zero-mean Gaussian. Given an estimator X0(Y ) and a joint density

, f(xo,y ), the mean square error e(f,X0o) of Xo at f is the expectation EI[Xo-Xo(Y)1 2/fJ.

The objective is to find a density-estimator pair (f*,Xo) that constitutes a saddle point,

i.e.
* *O

e(f,X0 ) e(f*,X o ) e(f* ,X0) (9)

for every X0 measurable and fEFm()

Unfortunately, a saddle point solution of the above game for the class Fm(e) does

"' not exist. In particular, the quantity inf sup e(fX 0 ) is strictly larger than

sup inf e(f, X0 ) and the latter supremum with respect to f cannot be attained in F (c).
fcF m () go

* OThis is due to the non-tightness of Fn(e) which allows probability masses to escape to

infinity. For this reason we consider an enlargement of the class Fm(E) to include all

densities of the form (we denote the enlarged class by the same symbol):

m(F ) m m m mfm m tn m m m mxm m m
F ={f "f (y ,x )=(1-c) (x()fo(y -x )+cfos (xm)h (y ) (10)

,h arbitrary m-dimensional density)

m

The enlarged class F (c) in (10) is equivalent to considering outliers affecting the

observation process directly, not via the additive noise process, as is the case with the

class in (8). However, the minimax value of the game for the class in (8) is the same as

the minimax value for the class in (10). Furthermore, a saddle point solution of the game

4C. (9) always exists within the class Fm(e) in (10). From now on we consider only the class

FM(-) as defined in (10), and we seek the saddle point solution of the game in this class.

7
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From the results in Papantoni-Kazakos (1984a) we conclude that the saddle point of

the game can be found by solving

sup infe(f,Xo) (11)

The expression infe(f.Xo) represents the minimum mean square error at the density f and
1o

• can be written as

2o5 -I(f)
0

2
where,co = E(X 0 ) is the fixed variance ofX 0 , and

I~(f) =E{E2 {X/Y ,f}/f} =2 2

( xJ (x0,y )dx0)

R

f dy (12)

* R' ff(x0,y )dxo

RI

Considering the form of f (xo,y ) in terms of the nominal and contaminating

* densities, as derived from (10), and the zero mean assumption of the nominal densities,

the quantity 1(f ) can be written as a functional of the 1-dimensional restriction of the

density of the observation sequence y Let us denote the latter density by fy(y ). After

I". some algebra. we obtain

-,7-
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((I_)) f0 y(y )(P y)) (13)

I fY(Y')R

where, fv(y ) is the nominal density of Y at the vector point y, given by the

convolution of the information density f I and nominal noise density fn and the inner

product P y is the optimal linear estimator of X from y under nominal conditions (i.e.

for E--O). The density fy(y') belongs to the class F1 (), obtained from Fm(c) as follows

FyI (E) = Ify(yI) :fy(y = (1-I)fs(y)*foN(Y )+ ch (y I

(0 Problem (11) can now be reduced to

inf I(fv) (14)

Although the class of densities Fk(e) is not tight (therefore not compact) in the

weak topology of all probability measures on the Borel a-field of the metric space

(R ,y ), the infimum in (14) is attained in F y (e). Furthermore, there is a unique member
1

of Fy(c) attaining that infimum, under the nominal assumptions discussed before. The

above assertions together with the explicit form of the infimum and the corresponding(g

estimator, constitute the statements of Theorem 1 below, whose proof is in the Appendix.

Let O(x) and (D(x) be the zero mean unit variance Gaussian density and cumulative

distribution, respectively. Let H(X,z) , X>O be the Huber function defined as

H(X,z) = max(-A,min(X,z)) (15)

Q~T IFinally, let r be the nominal variance of the linear form P y , i.e.

9
(9

Ii€',' .*."."." .".".' . .,". " ?,. . "a! g'.-.-'. .. .', . a 2; " . ". .,". .. .. .2€ ... ' ' .' .' .
•
2.. ' ,2...' .' .' .2, 2 "-0



T 12 pT1 2 1 1
r= E(P Y) } (P )f,(y )dy. Then, we express Theorem l as follows.

R

Theorem 1

O (i) There is a unique saddlepoint solution (f*, Xo) of the game (9).

(ii) The saddlepoint observation density f and estimator X are given by the equations

0

T I

"- y y (16)

where,

0 -1 p__ y/

c.(D(c)±+c- 0(c)=-F (18)
2(1-)

We note that the estimator X0 in (17) above, is a truncated version of the linear,

TI
nominally optimal mean square estimator P Yv The truncation constant X is proportional

to the square root of the quantity r which is the variance gain in estimating X 0 from v'

under nominal conditions (vc-O). The proportionality factor c tends to infinity for c-AO

n. the latter case, the estimator (17) becomes identical to the nominally optimal mean

square estimator. 1

4,'0
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'7.

There are interesting similarities and differences between the estimator X0 in (17)

and the classical robust parameter estimator of Huber (1964). Both estimators introduce

the same form of nonlinearity to limit the influence of bad observations. However, while

Huber's estimator applies the nonlinearity on each one of the observation data, the

estimator derived here applies a similar nonlinearity on a linear combination of the

observation data. Furthermore, the form of the least favorable density derived in (16) has

* heavier tails than the Gaussian by the linear factor I P Ty I, while, in the robust parameter

estimation problem, the corresponding least favorable density has much heavier

exponential tails. Regarding these comparisons, it should be pointed out that Huber's

result is based on the maximum likelihood esitmation of the unknown mean of a

contaminated distribution, while the result of Theorem 1 is based on a Bayesian

estimation of a random process corrupted by contaminated noise and with the mean

square as performance criterion.

Regarding qualitative robustness, we note that for any P, O<e<l, the estimator X0* is

* both continuous and bounded satisfying thus the conditions for outlier resistance stated in

the previous section for finite length estimators.

The mean square error induced by X0 at the least favorable density f y is equal to

2 *
O-I(fY). This is the largest possible error within the class F m(C) and by substitution

we obtain

S 2 2
e(f ,X0 ) =a, -(-e)(2 (c)-1)q

where, q = a Let e(f ,X 0 ) be the mean square error induced by the robust estimator
0 0

X. at the nominal Gaussian density. Also, let e be the nominally optimal mean square

11
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error. Then, after some computations we obtain

o 2 2
e =Oo(1--q)

e(fIXO) = e -2r(D(-c)(1+c )-cp(c))

The second term of ie right hand side of the above equation is always positive and
,% ^ *

represents the performance loss that is incurred if the robust nonlinear estimator X0 is

*O applied, instead of the linear nominally optimal one.

4. Construction of Filtering and Smoothing Operations - Step 2

We now consider the case when the number of observation data is larger than the

parameter m. For this case and for arbitrary nominal information and noise processes,

. results concerning the design and study of appropriate nonlinear filtering and smoothing

4P operations can be found in Tsaknakis (1986). For the purpose of this paper we will focus

on autoregressive Gaussian information processes and white Gaussian nominal noise

processes.

Let the nominal information and observation processes {XnJ, IY be given by the

equations

X = aIXn_ 1 + a2 Xn- 2 + + akXn- k + V (19)

r'4 Y =X +W
n 1 n I1

where, {Vn), {Wn } are mutually independent, i.i.d. and zero mean Gaussian, with
• 2 2

"4 variances a and a 2 respectively. Upon defining

TU=[X,X "'X. k+(
U Xn' n-i' xn-kA-11

12
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,al a 2+ .. .a k..-,

1 a.

A= (20)
0 1 .. 0

"0 0 1 "'
B 0  0 ... 1

"a' BT=[l 0 0' ]

the nominal model can be described in the following vector form

U = AUn_1 + BVn

Y = BTu + W (21)

Writing the system (19) in the vector form (21) has the advantage of the recursive Kalman

SE: filtering relationships for the nominal model. We want to estimate x0 given observations

Y,0' Y-1' "' Y-+I for any value of 1, when the observation process is corrupted by

outliers occurring in batches of size m. When 1l5m, we apply the minimax estimator

* derived in the previous section. When 1 >m, we consider estimating the entire vector u

given the above measurements, and we define the following recursive estimator

a. (0

-U0, -- A --m1,l + gm bil (yi-B TA +i (22)
i=-m+l

In (22), Am' I-a-ml' denote the estimates of the vectors u given observation

data (Y0, Y-1, "" Y- 1 )
' (Y-e Ym -' """ Y-M-1 )+' respectively. Also,

{bil, i=0,...,-/+l ) are the vector-valued coefficients of the linear m-step recursion of the

G. Kalman filter operation on the system (21). Finally, the vector-valued function gm is

defined as follows.

13
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where

'-j,m = Cr-jm ] 2

c'((c)+c 0(c) = 2 (24)
2(1 -€)

rj.m • variance gain in estimating x j given {y,-m+1_ i_O}

nder nominal conditions.

H(, ) : the Huber function as defined in (15).

* From (22), and in view of the defintions (23) and (24), it is evident that every scalar

nonlinearity is applied to linear combinations of at most m observation data.

Furthermore, if P---0, the positive constants {-m j=O ...... -k+l) tend to infinity and the

estimator in (22) becomes identical to the optimal at the nominal Gaussian model

estimator. For _>O, the above constants are all finite and they determine the amount of

limiting which is introduced in each entry of the innovations term of the Kalman filter.

A filter similar to (22) was earlier considered by Masreliez and Martin (1977), for

the case m=l. The above authors applied the nonlinearity on a transformed version of

the innovations process. However, their analysis was based on an ad hoc assumption that

the process formed by the residuals is Gaussian. Then, using this assumption, they

derived a covariance recursion, avoiding thus the problem of nested nonlinearities in the

actual nonlinear recursion. Later on, we will numerically demonstrate the performance

14
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of the above filter as compared with that in (22), as analyzed by the methods we present

in the sequel.

Here, we are primarily interested in the study of the asymptotic properties of the

estimator in (22) when the number of observations tends to infinity, and the nominal

information process is stationary. The condition for stationarity of the latter process is

that all the roots of the polynomial equation

k k-IX -lk ... a =0

have magnitudes less than one.

The first issue is the asymptotic outlier resistance of the estimator. Theorem 2

below, whose proof is in the Appendix, establishes that property.

Theorem 2

Let {Xn} in (19) have finite variance and be stationary. Then, the filter in (22) is

o asymptotically (l--oo) outlier resistant for mutually independent m-size batches of

outliers.

The next issue is the asymptotic stationarity of the filter itself when 1--oo. In order

to study that we consider the residual process

U-U - A m AmU +A m - -ml ),  (25)
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T fms+i T m+i- m+ Y - (Y B A Umi )+ B A (Um -miJ

". i=-m+l

For I going to infinity along multiples of m, the above residual process becomes

* asymptotically stationary. This will be shown by establishing a more general result

regarding the asymptotic stationarity of Markov processes with Euclidean state space.

The latter result is expressed in Theorem 3 below, whose proof is in the Appendix. In the• AT

sequel we denote I xI I max Ix.i forx= (x,..x n)

In

Theorem 3

k I k
Let f(x,y) R x R -* R be measureable. Let {X., n_O} be a stochastic process in

k
R defined by

nX 1 = f(X, V), n>O (26)

where IV, n_O} is an i.i.d. process in R, independent of X.0 with distribution P().

Then, if there is a positive C, such that C<1 and

f I I f(x,v) - f(x',y) I I dP(v_)< I I x-x' I I ,x,x'R (27)

RI

the process {XJ is asymptotically stationary.

, ("

The residual process (25) satisfies the conditions of Theorem 3. This can be shown

by using the properties of the nonlinearity g namely that

16
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I Igim(x) - g (x') I11 I x-x' I I and certain standard properties of the linear filtering

'40
coefficients (t} and the stationary matrix A. As a result, the marginal probability

density of the residuals converges weakly to a steady state density. The covariance of

that steady state density is what we call the asymptotic mean square error induced by the

filter (22) at the nominal Gaussian model. In fact, it is even true, as a result of Theorem

3. that the sequence of covariances of the residual process converges to the steady state

* covariance.

The computation of the steady state covariance is an important component in the

study of the asymptotic properties of the proposed filter. It is interesting to point out that

the deviation of the robust filter from the nominally optimal linear filter builds up as the

number I of observations increases, and we would like to see what is the performance for

* asymptotically large number of observations, as compared to the nominally optimal

asymptotic performance. The difference in performance will clearly exhibit the price

that one has to pay for achieving robustness in this context.

0 Due to the nature of the nonlinear residual recursion, the computation of the

asymptotic covariance is a difficult and tedious task. As analytic, or closed form,

expressions seem impossible to obtain, we approached the problem by deriving upper

and lower bounds. The derivation was based on the asymptotic stationarity of the

2 - m/2
residual process, which implies limE{(U -Uo) imE(U -mU_ , and the

l ---o, .--oo

approximation of the square of the second term in (25) by upper and lower quadratic

bounds in terms of U -U The bounds were finally obtained by solving two fixed-- rn -rnl"

m mT
(point matrix equations of the form X = A X(A ) + G(X). The two bounds are found to

be tight enough and approaching each other as the design parameter m becomes larger, at

17
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the exponential rate I max(A) I , where imax(A) is the largest magnitude eigenvalue of

the matrix A. As a result, a reasonably good estimate of the asymptotic covariance was

obtained. We defer the discussion of this issue until section 6 where the above results are

numerically demonstrated and analyzed.

5. Breakdown Point. Influence Function.

Let us consider the frequently observed in practice case of independent and additive

outliers. In particular, let the noise sequence {....W ,W0,W1,... } be such that each of

its elements is generated by the nominal Gaussian noise process, with probability 1-6,

and it is instead equal to some deterministic value, v, with probability 6, 0 6 _1. Let the

value v occur with probability 6, independently per noise datum. Given the above outlier

model, given some asymptotic filtering or smoothing operation, X01 let e(f,8,v,X )

denote the induced mean squared error. That is, if f represents the overall nominal

Gaussian model, then, e(f,8,v,X0 ) = E{(X 0-X ) I2 lf,,S,v }. Let us denote,

," A

" e(f,6,X 0 ) _ lim e(f ,6,v,X0), and let there exist some value 6*, 0<8*<1, such that,

2
e(f ,X ) >E{X0 If0,0) ; V6>8

e(f,: 0  E EIX 2 If ) ; N,86 6*

Then, the value 6* is called the breakdown point of the asymptotic operation X0. Thie

(,.

breakdown point clearly represents the maximum frequency of independent,

asymptotically large in amplitude outliers that the operation X0 can tolerate, before it

( becomes worthless; that is, before it starts inducing mean squared error, that is larger

than that induced when no observation data are available. We note that the breakdown

18
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points of the nominally optimal linear filtering and smoothing operations, are easily

found to equal zero.

Let us now consider a generalization of the outlier model presented above. In

CO particular, let us consider the case where independent, size m blocks of outliers may

occur. Then, each block occurs with probability 8, and it consists of a value v per datum

in the block. Given some filtering or smoothing operation X0, we then denote the

* induced mean squared error, em(fo,8,v,Xo). Denoting by e(f,X o) the mean squared error

A
in the absence of the above outlier model, we denote, Jm,8 (v) - em(f,6,v,X 0 ) - e(f,X 0 ).

We call Jm(v) the variation function at 6. Given 6, the variation function exhibits the

difference between the mean squared error, when the outlier value is v and the frequency

of the outlier blocks is 6, and the mean squared error in the absence of outliers. We call

( J__8(v), the normalized variation function at 5 and we call

A
Im(v) limlm,5(v) the influence function. The influence function is the slope of the

variation function at 8--0, and it exhibits the effect of the outlier value v, at

asymptotically small outlier frequencies 6.

Regarding the computation of the breakdown point and the influence function I m(v)

of the filtering operation in (22), an approach similar to that used for the asymptotic

variance was adopted. In particular, upper and lower bounds, were computed for both

2m
quantities. These bounds approach each other at the same exponential rate I .ia x(A) I

The influence function, Ia(v), of the nominally optimal linear filter, was also
m

computed for comparison. The latter has a closed form expression which is a quadratic

function of the outlier value v.

19
4%



0ov m i 2 T 2 T m T i
) t1(I-C)A I [v i -T,,NII(A )(I-C)I

where,

it 0
T i

C = bB A , (bi = limb
l -... o,

i=-m+lI

Sb.

i=-m+l

0
T

N bb.

i=-m+ 1

6. Numerical Results

In this section we present some numerical results regarding the asymptotic

performance of the filtering operation in (22), for two spec;al cases of the nominal model

Ip (20).

Model I First order autoregressive with autoregressive parameter a = 0.5, and

2 2

2 2Model 2 Third order autoregressive with a, = 0.6, a2 = 0.07, a = -0.06 and (Y = (= 1.

Tables 1, 2, and 3, and Figures 1 and 2 exhibit the performance of the filtering

operation in (22), for various values of the design parameters F- and m, when the nominal

model is model 1. When the nominal model is instead model 2, the corresponding

performance is exhibited in Tables 4, 5, and 6 and figure 3. Tables 2 and 5 correspond to

20
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independent per datum outliers, while tables 3 and 6 correspond to independent m-size

batches of outliers.

Both the upper and the lower bounds of the asymptotic at the nominal mean squared

error (Tables 1 and 4) are monotonically increasing when the contamination parameter c

increases, for anv fixed m. Moreoever, for fixed F-, particularly for small values of e, the

upper bounds of the asymptotic error decrease sharply when m increases, while the

corresponding lower bounds experience relatively smaller variations with m. Regarding

the breakdown point (Tables 2, 3, 5, and 6), we first observe that both upper and lower

bounds increase when E increases, for any fixed m. For the case of independent per

datum outliers, the upper and lower bounds of the breakdown point decrease when m

increases. On the contrary, when independent m-size batches of outliers are acting, the

lower bounds of the corresponding breakdown point increase with m, while the upper

bounds remain practically constant. Finally, the upper and lower bounds of the influence

function of the filtering operation in (22) are always monotonically increasing and

O bounded, as can be seen from Figures 1, 2, and 3. They both reach certain saturation

points depending on E and m, and, for fixed m, these saturation points are decreasing

when E increases. In all the above cases and for all values of e, the upper and lower

bounds tend to become equal for large m, permitting thus a more accurate evaluation of

the performance measures of the filtering operation in (22).

4, The filtering operation in (22) can combine close to optimal at the nominal model

performance, together with good protection against outliers. In addition, this operation is

more appropriate for protection against independent batches of outlicrs. Similar results

are drawn when the order of the nominal autoregressive model in (20) is some arbitrary

21
IQ,



inteer k.

Using the concepts and methods that we developed in previous sections, we

analyzed the as-ymptotic performance of the filter proposed by Masreliez and Martin

when it operates on a stationary environment. In Tables 7 and 8, the asymptotic mean

square error bounds and the breakdown point bounds of the latter filter are shown

(column B) versus the corresponding bounds for the filter in (22) presented here. In

. •Figures 4 and 5 the same comparison is made for the influence functions of the two

filters. Both filters were assumed to operate on the same process which was taken here to

be model 1, and for m=l. It is observed that the mean square error bounds of the filter

(22) are uniformly better than those of the Masreliez and Martin filter (Table 7), at the

expense of lower breakdown points (Table 8) and higher saturation points of the

influence functions. However, for m=2, it can be clearly seen from Tables 9 and 10, that

the breakdown points of the filter (22) improve considerably while the mean square error

remains small, especially for low contamination levels.

* 7. Conclusions

We designed and analyzed nonlinear filtering and smoothing operations that were

found to provide effective resistance to outliers and simultaneously good performance at

the nominal Gaussian model. The proposed estimators can be easily implemented, being

only slightly more complex (in implementation) than the usual linear estimators.

1lto%%ever, the analysis and evaluation of their asymptotic performance were considerably

more involved than that for linear estimators, both from a theoretical and a computational

po)int of View.

22
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Due to the nonlinear recursion which is involved in (22), an exact covariance

recursion is not possible. So, it was necessary to study the entire functional recursion of

probability distributions. Then, we proved asymptotic stationarity of the residual process

by establishing a more general result concerning the asymptotic station arity of Markov

processes with Euclidean state space.

For the proposed estimators, strong robustness and good performance at the nominal

* are conflicting requirements. The more robust an estimator is, the worse performance it

has, and vice versa. The tradeoff between robustness and performance has to be adjusted

for each particular problem by appropriately varying the design parameters F- and m,

according to the specific requirements and the available knowledge about the underlying

Situation.
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APPENDIX

Proof of Theorem I

We first prove that if the optimization problem

inf I(fy)

f yFv (E)J
* has a solution, it is unique. Indeed, let f 1 2 be two 1-dimensional densities in F (E)

. attaining the infimum. Then, since I(-) is convex, any density f 8 of the form

f 8 = (1-8)f1 + 8f 2 , 0 <6 1

must attain the same infimum. Thus, I(f6 ) is constant for 0 <8 1. It is implied that

,. d2 Iff) ((1 -0foy(yl)(P TYI )) 2(f2(YI)-fl (Y I))2

0= =2f dy (A.1)
d5 2

SR

where, the differentiation under the integral sign is justified by the dominated

convergence theorem (observe that f6>(1-c)f y>o). From (A.1) we conclude that fl=f2

IT I
a.e. (dy ), since P-O and the set where P y 0 is a proper subspace of R .

We now prove

",* 1

I (f) < I(fI), VfyFy(c) (A.2)

Let E. = y I Py I< } and E. its complement in R . Since
A A.

T I
IPylI

fy(y ) = (l-E:)fv(y )max( 1, 1, we have the following relationships.
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I(fy) - I(fy) =

[(-E)Py fy(y )] 2 (fy(y) (1-)f I(y))

I dy +

EfY(y )fy(Y )

T 1 1l2 1l * 1
[(-E)P y f(y )] (fy(y) -f(y))

+ f dyI <

• 1
C fy(y )fy(Y

< X2 
_Y1

fX - (fy(y) -fy(y))dy =

_Y (fy)) 2  1
I- - *y dy 0

Rl Ify )

The inequality in (A.2) follows from the above relationships.

The expressions in (18), determining the value of the constant X, evolve from the

requirement that ffy(yt)dy' = 1.
Rf

^* 1Finally, the form of the robust estimator Xo(y ) is equal to the conditional

expectation E(Xoyl ) at the least favorable density f*(x.,y I).

S

* f*(x 0 ,Y')

X(Y,)= fx o  dx0  (A.3)

R' fy(y')

where,

25
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C

f*(xo,Y)= (1-P)f(Xo,Y) + :f~s (xo0)h*(y )(A.4)

Substituting (A.4) into (A.3) and recalling that f x0fos(x 0)dxo = 0 and

R

S~ T TI
ff(x0 ,y )dx = f0 (y )P y we obtain

R

S TI TI

sgn(P 
y ,for IPTyI<

T I

s H(gn P y),

Proof of Theorem 2
b'4

.* The operation in (22) has the general form, X = Y"X + g(y , ".Xi'{)), where,
n i i

for some bounded, X,
4,.,

I,

x ; IxI X)

g sgnx: I>,' and where I ai 1c, for some given c>. Therefore,

U" i
I, Ix I < .k[l+i~a i ] 15 (c+l); Vn.(A5

2
Let E (Xnn I ) denote the mean squared error induced by the estimate Xn' when

the Gaussian nominal observation process is acting. Let E I([Xn-Xn 12 be the same

26
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n Zn
error, when some process in class Fm is acting instead. Let y and z denote sequences

that are respectively generated by the processes Lo and pt. Given some set An in Rn and

in connection with (A.5) and the Schwartz inequality, we have,

E {[Xn-X]2 1zA n  E {X 2 I zn A} - 2E (X n Izn eA n -+

9* n12 1 n]E n  n~L n n f
, +E (L [X n I Az < (A.6)

0
112 X2 n /2 nn 2 n n

'c+2E X cAE }E [n21zn-A +E}+ f ([XII znFA}

,"1/2 2 2 C1/2+

__ c+2Xc (c+l)+A (c+1) = [C +X(c+l)l C

Due to (A.6), and considering ergodic and stationary observation processes in

O conjunction with Fm, we obtain: given 1l>0, there exists no, such that,

; 2 ) 2 i+m i+m nn
SVn>n;E {[X-Xn  (1-+)E{[X -X] I [#i:^ym(zi+1 , Yi+, )>cl_ne,y ER )+EC

41" (A.7)

where, for independent m-size outliers, there exists some o>0, such that,

2 ni+m i+mE{I-n I[#:P(zi~ , Yi~l )>E]<n,y cR)}_ (A.8)

^ 2
_<E°{ [Xn-X n] I + eC; -V'Et0< Vn>n

From (A.7) and (A.8) we conclude: Given T = -, there exist n0 and c>O, such that
p. 2

p2.
.
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2 '2 E E
S{[Xr-k nI -E .11 Xn-X] } I <(2--)C + - E IX -X I

2 2 0

2 5 A

< -- C 6; 'Vn>no,VF<o
. 2

28
Thus, given 8>0, there exist, n , and E:0<£<min(e o, - ), such that

5 C

- np(I-tp1) < e implies I E {[x- 2 -E [Xn-1 1< n>n

The proof of theorem is now complete.
-f

Proof of Theorem 3

From (26) we conclude that (X} is a Markov process. Thus, to prove asymptotic

.* • stationarity, it suffices to show that, given any distribution for _, the distribution of X

kk
.- converges weakly to a unique distribution in R , as n--.

Let It0(x_) be an arbitrary density function, VxR k . Let then the sequence

-( tx) n0} be defined as follows.

9n+l ( x )  f a(x,co) gn(co)do (A.9)
Rk

;where A(x,co) denotes the conditional density function of x, given c, when x =f(o,v),

and where co is independent of v, and p(v) is the density function of v at vcR . Let us

now define the sequence A(n) (,co), n2: 1, as follows.

A((x,o) A(x,wo) (A.10)

28
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A (xi) A (x, zA (zct)dz

R

Then, we can write,

Rk

To show weak convergence of the sequence {jL n(x)), we need to show that there

exssadniyfnto0tx - 'sc tafraycniuu n one ucin
kk

g()in R , we have,

fg(t_)d -x *f(41K (A. 12)
k k

R R

*Let us define the sequence Ig(x), rt ,O), as follows.

go(-y) = (-X)(A. 13)

9 xU fA(z~g 1 ~d

k
R

Then,

f g9x)*t_(jdx f Jg(-')()(Ix)dx (A.4
Rk Rk

Let us define,

4 ( SLIP SLI su (n sup -gjg_ n (A. 15)

.1 29
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Without lack in generality, we will assume that the quantities (un) are all finite.
Si

(ihis is true if, for example, the functions g,n) satisfy a Lipshitz condition.) From (26)

and (A. 13) we obtain,

0
,, " fnz (f(x,v))p(_)dv (A.16)

R

From (A.15) and (A. 16) we conclude,

un < f {sup(6 - 1 sup gnI(f(,vY))-gn I(f(__,yv)) )Ip(v)dv

k 6>0 I I I <8
R

< h v(p(y){ sup ([8h(9] -1 sup Ig n-(_ )-gn-I(_o) I)}dv
k 8>0 I I x-_ol I <5h(_)

R

=un- I fh(v)p(-)dv = CUn _',<l (A.17)

kR

k
From (A.17), we conclude that u -- 0, as n--, and that g (_)-g._x) = constant on R

as n--+--. Thus,

f g(xL)(x_)dx) = Jfgn(X) jt 0(x_)dx----constant (A.18)

Rk Rk n ---

Due to (27), the sequence {ti_(x)) is tight. Thus, there exists a subsequence

In (x)}, and a density function i(x) in R , such that, for ever, continuous and

function g(!_, we have,

C.
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I gn - ( d  --- I g g ( ) d x (A.19)

From (A.18) and (A.19) immediately follows that,

6 g('n(-dx---- J g ()p((x)dx

R k Rk

and the proof of the theorem is now complete.

I
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pM

1 : 1 2 3 4 5 6

002 0.53167 0.53284 0.53333 0,53346 0.53350 0.53351
002 0.66941 0.56629 0.54159 0,53552 0.53401 0.53364

0.1 0.53488 0.53963 0.54136 0.54183 0.54195 0.54198
01 0.67108 0.57247 0.54945 0.54385 0.54246 0.54211

01 0.58157 0.608293 0.61640 0.01851 0.61904 0.61917
01 0.70620 0.63797 0.62328 0.62032 0.61949 0.61929

0.5 0.60983 0.64401 0.65401 0d.-65659 0.65723 0.65740
0.5 0.72961 0.67249 0.66099 0.65832 0.65767 0.65750

0.71376 0.72608 0.72921 0.72999 0.73019
0.25 0.78026 0.73998 0.73249 0.73080 0.73039 0.73028

03 0.70079 0.74848 0.76146 0.76474 0.76556 0.76576
03 0.80718 0.77357 0.76758 0.76626 0.76594 0.76586

04 0.76727 0.81887 0.83243 0.83582 0.83667 0.83688
04 0.86426 0.84156 0.83795 0.83719 0.83701 0.83697

T.ible 1

Bounds on the asymptotic mean squared error, at the
nominal model.
Model 1. Causal filtering operation in (2?).
Asymptotic mean squared error induced by the optimal at the
nominal model causal filter - 0.53112
Upper lines: lower bounds.

m 1 2 3 4 5 6

002 0.09928 0.06814 0.04932 0.03788 0.03056 0.02556
002 0.14352 0.07476 0.05048 0.03811 0.03060 0.02557

*0.01 0.169 010040 0.07274 0.05597 0.04522 0.03786

01 0.32204 0.21602 0.15715 0.12180 0.09898 0.08326
01 0.40878 0.22978 0.15974 0.12228 0.09908 0.08328

0.5 0.38225 0.25595 0.18674 0.14516 0.11824 0.09962
0.5 0.47011 0.27034 0.18937 0.14568 0.11835 0.09964

0.5 0.48129 0.32349 0.23761 0.18576 0.15194 0.12840
* .5 0.56488 10.33815 0.24036 0.18631 0.15205 0.12842

03 0.52466 0.35423 0.26119 0.20477 0.16783 0.14203
03 0.60450 0.36875 0.26395 0.20533 0.16795 0.14206

0.60417 0.41329 0.30739 0.24246 0.19955 0.16937
04 0.67478 0.42723 0.31012 0.24301 0.19967 0.16940

Table 2

Bounds on the breakdown point.
Model 1. Causal filtering operation in (',2). Independent
per datum outliers.
Upper lines: lower bounds.
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1 2 3 4 5 6

0.09928 0.13164 0.14080 0.14315 0.14315 0.14389
0.002 0.14352 0.14394 0.14394 0.14394 0.14394 0.14394

0.14699 0.19073 0.20274 0.20580 0.20656 0.20676
0 0.20676 0.20686 0.20682 0.20682 0.20682 0.20682

0.1 0.32204 0.38537 0.40125 0.40520 0.40618 0.40643
0.1 0.40878 0.40676 0.40653 0.40651 0.40651 0.40651

0.15 0.38225 0.44639 0.46212 0.46601 0.46698 0.46723
0.47011 0.46759 0.46733 0.46731 0.46731 0.46731
0.48129 0.54234 0.55688 0.56045 0.56134 0.561560 0.56488 0.56195 0.56166 0.56164 0.56164 0.56164

0.52466 0.58298 0.56672 0.60010 0.60093 0.601140.3 0.60450 0.60152 0.60124 0.60121 0.60121 0.60121

0.60417 0.65577 0.66775 0.67067 0.67140 0.67158
0.67478 0.67193 0.67166 0.67164 0.67164 0.67164

IS Table 3

Bounds on the breakdown point.
Model 1. Causal filtering operation in (22). Independent
size-m batches of outliers.
Upper lines: lower bounds.

mL
1 2 3 4 5 6

0.55402 0.57594 0.59937 0.61040 0.61445 0.61566
00 0.83214 0.68407 0.63361 0.62154 0.61764 0.61658

0 0.57548 0.62504 0.66518 0.68180 0.68763 0.68936
0.01 0.86214 0.73994 0.70200 0.69383 0.69109 0.69035

0.62110 0.69155 0.72865 0.74097 0.74499 0.74615
0.89436 0.79589 0.76040 0.75110 0.74788 0.74698

0 0.65204 0.72942 0.74120 0.77011 0.77401 0.77432
01 0.94013 0.83110 0.79568 0.78320 0.77516 0.77501

0.69875 0.73479 0.76678 0.78133 0.79002 0.79012
0.95182 0.86264 0.80203 0.79312 0.79202 0.79136

"" 0.73478 0.73930 0.78033 0.79300 0.80400 0.80511
0.96067 0.91011 0.86481 0.82414 0.80923 0.80547

0.73510 0.74902 0.79087 0.81142 0.82267 0.82320
0.4 0.97033 0.91437 0.86690 0.83571 0.82610 0.82359

Table 4

Bounds on the asymptotic mean squared error at the nominal
model.
Model 2. Causal filtering operation in (22). Asymptotic mean
squared error induced by the optimal at the nominal model
causal filter - 0.54731.
Upper lines: lower bounds.
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1 2 3 4 5 6

002 0.07594 0.05802 0.04513 0.035395 0.028765 0.02411
002 0.13890 0.07501 0.04960 0.035980 0.029010 0.02486

0.1 0.11029 0.08225 0.06334 0,04958 0.04030 0.03380
0.1 0.20020 0.11510 0.08010 0.05156 0.0450 0.03388

0.25689 0.18640 0.14353 0.11313 0.09248 0.07790
0.1 0.39537 0.22540 0.15003 0.11804 0.09424 0.07823

0.5 0.32899 0.23552 0.18083 0.14286 0.11705 0.09878
0.5 0.47563 0.27100 0.20242 0.14811 0.11829 0.09890

0.47094 0.33123 0.25350 0.20121 0.16563 0.12747
0.5 0.60225 0.39693 0.26089 0.20541 0.16735 0.12784

03 0.53838 0.37811 0.28952 0.23047 0.19020 0.16150
03 0.65802 0:42004 0.29457 0.23215 0.19082 0.16195

04 0.66166 0.47002 0.36191 0.29019 0.24090 0.20548
04 0.75106 0.52401 0.39102 0.30016 0.24210 0.20602

Table 5

Bounds on the breakdown point.

K Model 2. Causal filtering operation in (22). Independent
per datum outliers.
Upper lines: lower bounds.

1 2 3 4 5 6

002 0.07594 0.11269 0.12939 0.13424 0.13578 0.32
*002 0.13890 0.13995 0.14500 0.13952 0.13595 0.13682

q0.11029 0.15774 0.17826 0.18406 0.18592 .183
0.1 0.20020 0.19500 0.19851 0.18820 0.18683 0.18682

0.25689 0.33813 0.37173 0.38136 0.38444 -0.38530
01 0.39537 0.39220 0.39104 0.38804 0.38740 0.38607

0.5 0.32899 0.41556 0.45031 0.46022 0.46336 0.46424
0.5 0.47563 0.47215 0.46903 0.46630 0.t,6502 0.46482

0.47094 0.55275 0.58401 0.59287 0.59561 0.59820
0.5 0.60225 0.60112 0.60039 0.60004 0.59970 0.59918

0.53838 0.61325 0.64137 0.64932 0.65175 0.65244
03 0.65802 0.65720 0.65695 0.65530 0.65398 0.65307

04 0.66166 0.71912 0.74020 0.74616 0.74795 0.74845
04 0.75106 0.75083 0.75010 0.74970 0.74912 0.74887

4L

Table 6

Bounds on the breakdown point.
Model 2. Causal filtering operation in (22). Independent

size-a batches of outliers.
Upper lines: lower bounds.

% %



A BA

*0. 53167 0. 53283
0.002 0.66941 0.66992

0.01 0.53488 0. 53934
0.67108 0.67378

490.58157 0.60346
0.1 0.70620 0.72394

0.60983 0.63695
0.15 0.72961 0.75215

*0.66941 0.70312
0.25 0.78026 0.80876

0.3 0.70079 0.73546

0.80718 0.83740

4 0.76727 0.80487

0.4 0.86426 0.89603

Table 7

* Comparison of asymptotic mean square error bounds
between filtering operation in (22) and the filter
by Masreliez and Martin. Model 1. Optimal at the
nominal: 0.53112
A: Causal filtering operation in (22). m=1i
B: Filter by Masreliez and Martin

li Upper lines: lower bounds.

4'' 37

WoP o



FT -
4-

£g A B

I 0.09928 0.12240
0.002 0.14352 0.17464

0.14699 0.17853
0.01 0.20676 0.24633

* 0.32204 0.36890
0.1 0.40878 0.45648

0.38225 0.42999
0.15 0.47011 0.51629

0.25 0.48129 0.52707

0. 56488 0. 60631

0.52466 0. 56851
0.3I

0.60450 0. 64324

0. 4 0.60417 0.64312

0.67478 0.70798

Table 8

Comparison of breakdown Doint bounds. Model 1.
A: Causal filtering operation in (22). m=l.

B: Filter by Masreliez and Martin.
Upper lines: lower bounds,

%

-p

.-

wd

.1

I]



C A B

0.002 0.53284 0.53283

0.56629 0.66992

0.01 0.53963 0.53934

0.57247 0.67378

0.1 0.60829 0.60346

0.63797 0.72394

0.5 0.64401 0.63695" 0.15

0.67249 0.75215

0.25 0.71376 0.70312

0.73998 0.80876

0.3 0.74848 0.73646

0.77357 0.83740

0 04 0.81887 0.80487

0.84156 0.89603

Table 9

0 Comparison of Asymptotic mean square error

bounds between filtering operation in (22)
and the filter by Masreliez and Martin.

Model 1. Optimal at the nominal error: 0.53112.
A: Filtering operation in (22). m=2.
B: Filter by Masreliez and Martin.

Upper lines: lower bounds.
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A B

0.002 0.13164 0.12240

0.14394 0.17464

0.01 0.19073 0.17853

0.20686 0.24633

0.1 0.38537 0.36890

0.40676 0.45648

0.15 0.44693 0.42999

0.46759 0.51629

0.25 0.54234 0.52707
0.56195 0.60631

0.3 0.58298 0.56851". 0.3

0.60152 0.64324

0.4 0.65577 0.64312

0.67193 0.70798

Table 10

*0 Comparison of breakdown point bounds.
Model 1. Size-m batches of outliers.

A: Causal filtering operation in (22). m-=2.
B: Filter by Masreliez and Martin.

Upper lines: lower bounds.
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Bounds on the Influence Function
Model 1. Causal filtering operation in (22).
E=0. 002
lO(v): Influence function induced by the optimal
m at the nominal model filter.
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Bounds on the Inf~uence Function
*Model 1. Causal filtering operation in (22).

10 (v): Influence function induced by the optimal atm the nominal model filter.
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UNIVERSITY OF VIRGINIA
School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate
enrollment of approximately 1,500 students with a graduate enrollment of approximately 560. There
are 150 faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties.
These range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical
and Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering,
Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer
Science. Within these disciplines there are well equipped laboratories for conducting highly specialized
research. All departments offer the doctorate; Biomedical and Materials Science grant only graduate
degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time
student enrollment of about 16,400), also offers professional degrees under the schools of Architecture,

* Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College
of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant
to the engineering research program. The School of Engineering and Applied Science is an integral
part of this University community which provides opportunities for interdisciplinary work in pursuit
of the basic goals of education, research, and public service.
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